
Second-Guessing in Tracing Tasks Considered Harmful?

Bhushan Chitre1, Jane Huffman Hayes1, and Alexander Dekhtyar2

1 University of Kentucky, Computer Science, Lexington, Kentucky, USA

2 California Polytehcnic State University, CSSE, San Luis Obispo, California, USA
{bhushan.chitre, jane.hayes}@uky.edu, dekhtyar@calpoly.edu

Abstract. [Context and motivation] Trace matrices are lynch pins for the development of
mission- and safety-critical software systems and are useful for all software systems, yet
automated methods for recovering trace links are far from perfect. This limitation makes the job
of human analysts who must vet recovered trace links more difficult. [Question/Problem]
Earlier studies suggested that certain analyst behaviors when performing trace recovery tasks
lead to decreased accuracy of recovered trace relationships. We propose a three-step experimental
study to: (a) determine if there really are behaviors that lead to errors of judgment for analysts,
(b) enhance the requirements tracing software to curtail such behaviors, and (c) determine if
curtailing such behaviors results in increased accuracy. [Principal ideas/results] We report on
a preliminary study we undertook in which we modified the user interface of RETRO.NET to
curtail two behaviors indicated by the earlier work. We report on observed results.
[Contributions] We describe and discuss a major study of potentially unwanted analyst
behaviors and present results of a preliminary study toward determining if curbing these
behaviors with enhancements to tracing software leads to fewer human errors.

Keywords: Requirements tracing •Study of the analyst • Trace vetting • RETRO.NET • User
interface • Empirical study

1 Introduction and Motivation

Automated tracing, generating or recovering the relationship between artifacts of the
software development process, has been well researched over the past 15 years [4], but
this automation doesn't come without inherent costs. One such cost is the need for
human analysts to interact with the results of the automated methods. What we currently
know about such interactions is that they tend to end disappointingly [1,2,6]. As long
as we are using automated tracing methods for safety- and mission-critical systems, we
must have humans vet the links. Therefore, we need to figure out how to make humans
more accurate as they work with the results of automated methods. In prior studies we
noticed some unwanted behaviors [1,2,6]. Can we curb them? Will curbing them yield
fewer human errors?

A trace matrix is a collection of trace links, defined as “a specified association
between a pair of artifacts, one comprising the source artifact and one comprising the
target artifact.“ by the Center of Excellence for Software and System Traceability
(COEST) [3]. A plethora of researchers have designed techniques for automatically or
semi-automatically generating trace matrices, many discussed in a comprehensive
survey by Borg [4]. Most of the focus in that work was on improving the quality of the

candidate trace matrix, the matrix generated by a software method. While that work
continues, recent work has segued into study of the analyst who works with the
candidate matrix to generate the final trace matrix — the one that is used in application.

A typical trace tool, such as RETRO.NET used in this work [5], displays the
candidate trace matrix and shows the list of source (high level) elements, and the list
of candidate target (low level) elements that were automatically mapped to the source
element. The texts of all elements can also be viewed. The key function of a tracing
tool is to allow the analyst to vet individual candidate links.

Cuddeback et al. [1] and Dekhtyar et al. [2] studied the work of analysts with
candidate trace matrices produced by automated software. The analysts were presented
a candidate trace matrix and were asked to evaluate the individual links and correct any
errors of omission or commission. The accuracy of candidate trace matrices varied from
analyst to analyst — from high-accuracy matrices that contained few omitted links and
few false positives to low-accuracy ones which contained many errors of both types.
The studies found that analysts working with high accuracy candidate traces tended to
decrease the accuracy — i.e., introduce false links into the matrix and remove true links,
whereas the analysts who had low accuracy matrices tended to improve the accuracy
significantly1. A follow-up study collected logs of analyst activity during the tracing
process, and looked at behaviors that correlated with improved or decreased accuracy
[6]. While that study did not have enough data points to allow for statistical significance
of the results, the authors observed a number of analyst behaviors that tended to lead to
errors of judgement. Specifically, two behaviors briefly described below were
observed.

Long time to decide. When analysts took unusually long (for their
pace) time to decide whether a candidate link needed to be kept in
the trace, they tended to make an incorrect decision [6].

Revisiting a link (backtracking). When analysts revisited a link
on which they already entered a decision and reversed that
decision, they tended to err [6].

Our motivation for the continuing study of analyst behavior in tracing tasks comes from
the key observations from the prior work [4,1,2,6]. On one hand, the lack of traceability
as a byproduct of development in large software projects demonstrates a clear need for
accurate automatic tracing methods [4]. At the same time, human analysts, when asked
to curate automatically obtained traceability relations, make mistakes and decrease the
overall accuracy of the trace [1,2]. We observe that one possible way to resolve this,
and to improve the accuracy of curated trace relations is, potentially, to curb analyst
behaviors that result in errors. In fact, psychologists studying human decision-making
have observed that humans tend to operate in one of two decision-making systems —
System 1 (S1) (or fast, instinctive thinking) or System 2 (S2) (slow, deliberate, logical

1 As reported earlier [2], the accuracy of the starting RTM affected the changes in precision,
recall, and f2-measure, and the final precision in statistically significant ways, but did not affect
final recall or final f2-measure in statistically significant ways.

thinking) [8]. The observed behaviors leading to decrease in accuracy belong to System
2. This motivates an additional research question expressed below.

2 Curbing Unwanted Analyst Behavior

The latter observation serves as the inspiration for our next step in the study of the
behavior of human analysts. In this section we discuss the overall plan for the study,
as well as the preliminary work we conducted.

2.1 Research Preview

The study we are planning to undertake consists of three key research questions.

1. RQ1: Are there analyst behaviors that tend to reliably lead to analysts
making errors, and where do these behaviors fall on the Kahneman’s
thinking system dichotomy [8]? We hypothesize that such behaviors can be
observed as statistically significant. We additionally conjecture that such
behaviors would correspond to the decision-making System 2 [8].

2. RQ2: What software enhancements for automated tracing tools can be
designed and developed to curb the discovered unwanted behaviors? We
hypothesize that each unwanted behavior can be curbed via UI and workflow
changes to the requirements tracing software.

3. RQ3: Is there an improvement in the accuracy of final trace matrices
constructed by the analysts using software with the implemented
enhancements? We hypothesize that the software enhancements will improve
the accuracy (i.e., decrease the number of errors that analysts make in vetting
candidate links and in discovery of omitted links).

The basic outline of the study is as follows.
Discovery of analyst behaviors. In the first stage we plan to replicate the tracing
experiment of Kong et al. [6] in which we collected activity logs from a group of
analysts performing a tracing task with a version of RETRO.NET enhanced with event
logging. The original study included only a few data points, and did not allow the
authors to observe any specific harmful behaviors with any degree of statistical rigor.
Our intent is to collect significantly more data points (i.e., logs documenting analyst’s
work with a tracing tool on a tracing task), so that log analysis may reveal clear analyst
behaviors that either tend to lead to errors, or tend to reliably improve accuracy, and
provide more than just anecdotal evidence in support of such observations.
 RETRO.NET logs information about individual analyst interactions with the
software — keys pressed, elements selected, linking decisions made and confirmed,
searches performed, etc. Each log record is keyed by a timestamp, making it easy to
map analyst behavior, and in particular to map their correct and erroneous decisions
along the time axis.
 Initial replicated experiments were conducted in Spring 2017 and Fall 2017
quarters. We have been able to collect over 80 data points, and are currently in the
process of analyzing the results to see if the prior observations [1,2] are confirmed. In

the immediate future, we plan to replicate the analysis of Kong et al. [6] on the 80+
tracing logs we now have.

The first observed behaviors leading to errors belonged to Kahneman’s System
2 (slow and deliberate) way of thinking. This leads us to ask the following question
during the discovery process: is RTM analysis a process that can be performed best
within the System 1 (fast, intuitive) [8] of decision-making? To answer this question,
we can classify the observed harmful behaviors within the S1 — S2 dichotomy.
Development of software enhancements. Once we identify analyst behaviors that
tend to lead to errors in link vetting, we plan to develop software-supported strategies
for curbing such unwanted behaviors. For each behavior discovered, we will design one
or more features to enhance RETRO.NET in a way that would reduce behavior
incidence. We will explore the following approaches:

1. Warnings. This is a very basic approach: detect an unwanted behavior, and as
soon as it is observed produce a warning within the tracing software
suggesting that the analyst reconsider.

2. Prohibitions. This approach starts the same way as a warning with the
detection of the unwanted behavior, but instead of simply producing a
warning, the software will simply refuse to grant the analyst the ability to
complete the unwanted behavior.

3. Restructuring. Certain unwanted behaviors may be eliminated or reduced if
the way the analyst interacts with the tracing software is changed, and the use
cases where such unwanted behaviors were observed are altered in significant
ways. An example of a restructuring solution may be a change from allowing
the analyst to review candidate links in arbitrary order to an interaction model
where the analyst is shown each link once in a predefined order and is not
allowed to revisit a link.

Study of the impact. We want to know the answers to two key questions:
1. Do software enhancements designed to curb unwanted behaviors actually

curb these behaviors?
2. Is the decrease in unwanted behaviors accompanied by a decrease in the

number of errors analyst make? (and thus by an increase in the accuracy of
the trace relation).
To answer these questions we plan to conduct a second replication of the prior

study [6], only this time we will use control and experimental groups of analysts. The
control group will work with the standard version of the RETRO.NET tool, without any
enhancements implemented in Stage 2 of the study. The experimental group will work
with a version of RETRO.NET enhanced with specific solutions for curbing unwanted
behavior. To test different ways of curbing the same behavior, we may need to conduct
multiple rounds of such study.

2.2 Preliminary Study

To test the feasibility of our approach we conducted a preliminary study. We briefly
describe the structure of the study and its results below.

Unwanted analyst behaviors. The study concentrated on the two analyst behaviors
described in Section 1 (a) taking an unusually long amount of time to make a decision

on a candidate link, and (b) revising an explicitly conveyed decision on a link. These
were the two clearest behaviors observed previously [6] that tended to result in errors.

Software enhancements. We elected to start with very simple modifications to
RETRO.NET. For each behavior, RETRO.NET was enhanced with code working in
the background designed to detect it, and with UI elements that would produce a
warning message to the analyst when the behavior was discovered. Specifically, the
enhanced RETRO.NET, upon detecting either of the two behaviors, displayed a pop-
up window informing the user that their behavior could lead to an error. In the case of
the user trying to revisit a decision, the user is given an option to backtrack. In both
cases, the user can also dismiss the prompt and simply continue with their action. In
making decisions about the enhancements of RETRO.NET we tried to make the
changes simple and non-prohibitive. We understand that UI design principles suggest
that pop-up messages that disrupt the flow of user interaction with the software may
reduce productivity and decrease user satisfaction with the software and its UI. At the
same time, we wanted the warnings in our first experiment to be “blatant,” easy to see,
and hard to miss. We took the risk of implementing the warnings via the pop-up
message UI elements fully realizing that we may be sacrificing some user satisfaction
with the software.

The study. A total of 14 subjects participated in a preliminary study conducted in
Spring of 2017 at the University of Kentucky. Five (5) subjects were in the control
group and worked with non-enhanced RETRO.NET. Nine (9) subjects were in the
experimental group and worked with the RETRO.NET version enhanced with
backtracking and taking-too-long warnings2. Each subject received a brief training
session on their version of RETRO.NET using the same toy dataset. Later, they were
presented with the ChangeStyle dataset [1,2] to trace. All subjects started with the same
initial candidate trace matrix. We measured the precision, recall, f2-measure, and lag
[7] of the resulting trace matrix the subjects submitted and the time it took them to
complete the work. The results of the preliminary study are shown below.

2.3 Preliminary Study Results

In our preliminary study, the experimental group showed higher mean precision (15.6%
vs. 8.3%), higher mean recall (96% vs. 77.6%), and higher mean f2-measure (0.329 vs
0.262), as well as better (lower) lag (1.85 vs. 2.55) for the submitted traces. Only two
mean values were better for the control group: the mean time (75 minutes versus 82)
and the change in true positives was higher (1.6 versus 1.222). This could be explained
by the extra prompts that were shown to the user: (a) that had to at least be dismissed,
and (b) that had to be at most obeyed.

2 Originally, the control and the experimental groups were of the same size, but we had a significantly
larger number of non-completions in the control group.

3 Discussion and Conclusions

The preliminary study tentatively indicates that basic prompts (discussed in Section
2.1 as warnings) may suffice to move analysts away from undesired behaviors without
having to resort to more restrictive measures, but at the expense of time taken to perform
tracing. The main, and very useful, outcome of the preliminary study is a list of items
that we must add to our future study: collect the number of times that prompts appear,
collect the amount of time that an analyst takes when dismissing and reacting to the
prompt, track the action taken by the analyst after a prompt, track the number of false
positives (true negatives, false positives, and false negatives) added and removed, and
potentially track each individual true positive link displayed by RETRO.NET to learn
its final disposition.
 As mentioned in Section 2.1, we envision a three stage approach to
investigating our main research question: can we help analysts vet trace matrices? For
the first phase of the study, discovery of the analyst behaviors leading to errors, we plan
to undertake studies (and have already undertaken some of them) using a software
tracing tool in order to discover what behaviors analysts exhibit when tracing. We posit
that we will discover good behaviors (those that lead to improved trace matrices) as
well as unwanted behaviors - those that lead to errors. Our early work discussed above
is a first step toward addressing the second of the three phases: enhance tracing
software to curtail unwanted behaviors and learn whether or not the software
enhancements do indeed curtail them. For phase three, we plan to undertake a study
similar to that of our preliminary study, but with a wider scope. We plan to collect
richer data from significantly larger control and experimental groups. We also envision
undertaking a statistical study of our data, as we will have sufficient data points to
permit such analysis. It is our hope that these three stages of our study will contribute
to our field and more importantly to software tracing tools put in the hands of
practitioners so that analyst tracing work won’t end in disappointment, but rather in
effective and efficient use of the analysts’ time.

ACKNOWLEDGMENT

We thank Dr. Dan Berry for insightful comments and suggestions on prior versions that resulted
in a greatly improved paper. We thank all participants from upper division software engineering
classes who took their time to participate in our study. We thank NASA and NSF as prior grants
funded the development of RETRO.NET. We thank Jody Larsen, the developer of RETRO.NET.
We thank NSF for partially funding this work under grants CCF-1511117 and CNS- 1642134.

References

1. David Cuddeback, Alex Dekhtyar, Jane Huffman Hayes. Automated Requirements
Traceability: The Study of Human Analysts. Proceedings of IEEE International
Conference on requirements Engineering (RE), September 2010, Sydney, Australia,
231-240.

2. Alex Dekhtyar, Olga Dekhtyar, Jeff Holden, Jane Huffman Hayes, David Cuddeback,
Wei-Keat Kong. On Human Analyst Performance in Assisted Requirements Tracing:

Statistical Analysis. In the Proceedings of IEEE International Conference on
Requirements Engineering (RE) 2011, Trento, Italy.

3. Jane Huang, Orlena Gotel, and Andrea Zisman. 2014. Software and Systems
Traceability. Springer Publishing Company, Incorporated.

4. Markus Borg, Per Runeson, and Anders Ardö. 2014. Recovering from a decade: a
systematic mapping of information retrieval approaches to software traceability.
Empirical Softw. Engg. 19, 6 (December 2014), 1565-1616.

5. Jane Huffman Hayes, Alex Dekhtyar, Senthil Sundaram, Ashlee Holbrook, Sravanthi
Vadlamudi, Alain April, REquirements TRacing On target (RETRO): Improving
Software Maintenance through Traceability Recovery. Innovations in Systems and
Software Engineering: A NASA Journal (ISSE) 3(3): 193-202 (2007).

6. Wei-Keat Kong, Jane Hayes, Alex Dekhtyar, Jeff Holden, (2011), How Do We Trace
Requirements? An Initial Study of Analyst Behavior in Trace Validation Tasks, in
Proceedings, 4th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE’2011), May 2011.

7. J. Hayes, A. Dekhtyar, and S. Sundaram, “Advancing candidate link generation for
requirements tracing: the study of methods,” IEEE Transactions on Software
Engineering., vol. 32, no. 1, pp. 4-19, Jan. 2006.

8. D. Kahneman, Thinking, Fast and Slow. New York, NY, USA: Farrar, Straus, 2011.

